OBSERVATIONS UPON THE OSTEOLOGY OF THE NORTH AMERICAN ANSERES.

EI DR. R. W. sHUFELDT, U. S. ARMV.
This well-circumscribed order or group agrees with Huxley's Chenomorpher, and coutaius the Mergansers, Ducks, Geese, and Swans.

For some time past I have been accumulating the material for a memoir upon the osteology of the entire group of lamellirostral birds of this country. I still lack, however, quite a number of important forms, which may take more or less time to secure. So that the present memoir must not be considered more than an introduction to the subject, thongh here it has the claim of introdncing a number of drawings of those forms, which can be compared with advautage with other species which I did not happen to hare in my possession at the time this was written.

Much of the anatomy of the auserine birds is known to us already, but that further elucidation in this direction is rery desirable I hardly think any one will question. Garrod gare the subject ho little attention, though he confined himself principally to the condition of the carotids, the presence or absence of certain muscles, and the form of the osseous portions of the air-passages in a number of the rarer types of Ducks. As I hare just said, Huxley, in his famous essay upon the Classification of Birds, created a separate group-the Chenomorphe-to contain, with a few related forms, the Anutidre, a division based upon anatomical characters so far as they were known at the time.

Cones, in 18S4, in the second edition of his Ker, availing himself of all that was known up to that period which conld be successfully ntilized in classification, arards the anserine birds the order Lamellirostres, dividing it into the suborder Odontoglosse for the single family of the Flamingoes, and the suborder Anseres to hold the Swans, Geese, River and Sea Ducks, and the Mergausers, these latter each having a separate subfamily created for it, to wit, The Cygnince, the Anserince, the Anatinte, the Fuliguline, and the Mergince, respectively. Collectively these subfamilies constitute the family Anutide of this anthor. Some few unimportant changes were made in the American Ornithologists' Union Check-List, but this classification remains substantially the same.

Even hy their external characters, the Swans, Greese, and Ducks, and the more modified Mergansers form a rery sharplydetined gronp of birds, and morphology has made quite clear to ns the probable relation the Flamingoes bear to them. So that it is not rery likely that further investigations will materially disturb the classification now adopted and iresented in the Cherk-List of the American Ornithologists'

Union. In fact, erery allance anatomy has made in that direction seems to have been attended by the one result, and that to assure us of the sombluess of the arangement in question.

Insteal of this being a signal, however, for the anatomist to cast his eyes from this line of work and slacken the activity of his scalpel in what he may think pofitless employment, it all the more devolves upon him to push his rescarches to a point nothing short of a perfect knowlelge of the structure of thesu forms. That we have not arrived at any such state of perfection I could easily point out. As I have elsewhere shown, even so profom an anatomist as Inxley, from lack of material and established data, may occasionally fail to properly define an im. portant characteristic, as he did in leseribing the stermm of these very Chenomopher (P. Z. S., 186i). Again, it is but reeently that Dr. Baur, of Yale College claims to have discovered an additional joint in the last digit or the middle finger of the embryo of the common Duck, a structure which is said to be visible at about the time of hatching.

I have never had reason to change my opinion as to the value, the incaleulable value, of a complete knowletge of the morphology of those living forms best known to us. With such a knowledge of the structure of the anserine fowl we are far better prepared to push our insestigations, with infinitely greater chances of assured results into the structure of allied groups than if we were not quite certain of caeh and every detail in the organization of these known forms.

The Anseres are well represented in the United States, and abumdant opportunity is afforded to study their structure.

Further work is much needed in this line upon the air passages of the entire group, the generative organs, and other special parts.

The Merginue constitute the first subfamily under the Anatider, atnd it has been awarded two gencra in our fama, viz, the gemus. Merganser of Brisson, containing the Mergansers, and the genns Lophodytes of Reichenbach, ereated to contain the Hooded Merganser (L. choullutus).
The Mergansers present nis with some very interesting points in their osteology, and the majority of these can be stmdied in the skeleton of Mergus serrator, a very goon specimen of which bird I have now at hand. I am indebted to the Smithsonian Institution for the lom of it (No. 16626 of the Smithsonian Institution collection), and will now deseribe its skeleton.

OBSERVATJONS UPON THE ONTEOLOGY OF MERGES SERRATOR.

Of the slull.-We find in this bird that the lamellie of the bill develop tooth-like serrations for the entire length of both mandibles. These psemdo teeth, however, make no impression whatever upon the osseous base of the bill, and in a well-prepared skeleton we would never suspect their existence. Ypon lateral riew of this skull (Fig. 1) we see that the superior mamblible curres slightly upwards as we proced toward its
apex; the lower margin is sharp, and above it is convex, except in the cranio-facial region and somewhat besond, where it is depressed.

A nasal is a large, broad bone; its anterior margin is reunded as in other holorhinal birds. The nostril is elliptical and placed horizontally, and the sutural traces of the bones that surround it entirely obliterated. A lacrymal bone is triangular in form, its apex below terminating in a spindle-form process, which is curved somewhat outward. Along its superior border it anchyloses with the frontal and nasal, the sutural trace being guite distinct in the adult skull. Not so, howerer, in most of the Ducks and Geese.

All anserine birds seem to possess a sleuder jugal bar; in the case of the Red-breasted Merganser, its distal end turns abruptly upward to make its articulation with the quadrate.

This latter bone has its orbital process widely bifid; its mastoidal head is single and roundly convex.

Fig. 1. Skull of Jergus serrator; right lateral view; lifesize. By the author, from specimen 16626, Smithsonian collection.

The facets at its mandibular foot are two in number, placed obliquels. They differ considerably in form and position from the same parts as seen in a specimen of a Brant before me.

The sphenotic process is prominent and gradually eurves downmard along its extent. In most Ducks it points downward and forwarl.

We find the linder moiety of the superior orbital periphery rounded off for the lodgment of the nasal gland. The exteut to which this is carried varies in the different species of anserine fowl.

About the center of the interorbital septum there occurs a large fenestra, and the foramina for the exit of the first and second pair of nerres are much larger than necessary for this purpose alone.

The pars plana is a rery thin, curved sheet of boue, which supports in front a crumpled mass of equally attenuated osseous tissue. This latter projects iuto the upper space of the rhinal chamber, and no doubt plays the part of a turbinated bone. Neither of these outgrowths come in contact with the inner aspect of the lachrymal bone of the same side.

The lower margin of the rostrum is straight, rising gently upward as it is projected forwarl, being sharp below along its anterior moiety.

Anteriorly the ethmois has an elonso cordate ontline. the base of the figure abutting against the under site of the cranio-facial region.

Viewing this skull from beneath we notice a long, narow eleft in front of thr maxillo palatines and bomed on either side by a dentary process of the premaxillary. This cleft is deepest behind and gradmally hecomes shallower as it proceeds to the front. Where it disappears just behind the rommed mandibnlar apex.

The muxillo-pulutines are thin, horizontal plates that are in contact for their anterior hatres in the metian line. but diverge as rounderl, distinct processes for their posterior moleties. These processes project into the wide interpalatine cleft, but do not come in contate either with the palatine bones nor with the romer. This latter is a long, thin plate of bone that is crasped by the small ascending processes of the palatines behind to anchylos with them, while above it is finished off with a rib-like margin which is pronneed berond the plate in front as a long - pienliform process, with its apex resing upon the midale of the max-illo-palatiue median suture.

Each palatine body is a narrow lamina of bone, the anterior end of it dilating somewhat before being inserted between and fused with the other clements in front.

These palatines only meet ach other, and that only in a point, behind their common seizure of the hinder ent of the vomer. Nor do they come in contact with the umber bormer of the rostrm, as they are !rerented from loing that by the sessile, though large and elliptical. basipterygoid tacets found mon the latter.

Their heads are separated behind by quite an interval, and each one makes a pecoliar combination joint with the corresponling head of the Iterygoin, which develops the reverse articulation for it.

Immediately posterior to this a pterygoid shpports also a sessile elliptical facet of precisely the same character as the one refered to above as occurring on the rostrm, the two coming in contact io form a perfect slilling joint, with smooth and plane surfaces opposed to each other.

 s [fecimen 1 C626. suitlisunian collection.

Posteriot to this articmation a pterygoid is somewhat compresed from abore downward, and curres gracefully outward to cover with its con like hinder end the spheroidal facet offered to it on the part of the corresponding quadrate.

The basi-temporal region is hroad and smooth, and a spine-like process at its aper fails to shut out from riew the donble orifice leading to the Eustachian tubes.

We find the major portion of the crotapliste fossa upon the lateral aspect of the skill. Still it may le scell also from a posterior riew, where the two depressions approach each other, but are separated by a large dome-like, supra-occipital prominence.

This latter is nsually pierced by an irregular foramen on either side, Which is quite characteristic but not always present in the Ducks and Geese. In a specimen of Branta canadensis hutchinsii before me a large one occurs ouly on the left side of the prominence.

Mergus has a large foramen magnum which faces almost directly backward. The occipital condyle at its lower margin is of a reniform outline with the notch above.

In the mandible the sympursis is short, and this bone, then seen from a superior aspect, is of an acute \mathbf{V}-shape form.

The anterior two thirds of either ramus is narrow, tapering some what to the ifont, with both mpper and lower borders rounded. On the outer surface a deep, median, and longitudinal groove of hair-like proportion is dramn along its entire length.
The hiuder third is much mider, nearly double the width, and, instead of being thick like the fore part of the boue, is a rertical lamelliform plate. Its border is sharp above. while below it is romded, being in the same line with the inferior border of the anterior tro-thirds.

The ramal fenestra is nearly or quite closed in by the surrounding elements; a loug, oblique slit marks its site. A curred projection is dereloped on the outer aspect of this part of the bone; that above apparently takes the place of part of the coronoid process.

Each mandibular facet presents two oblique grooves upon an area contracted to the minimum extent that would accommodate the mandibular foot of the quadrate that articnlates with it.

Behind, either angle is produced backwards as a recursed and vertical lamina of bonp, to the inner side of which we find the circular entrance to a deep conical pocket.

Mergus serrator has an enormons bilobed tracheal trmpanum at the pulmonic bifurcation of its windpipe. These interesting structures rary much in form and size in the different species of birds that possess them, and would well repay a geueral comparison.

Of the rerteiral column and ribs.-This Merganser has siste-one vertehree in its spinal column; the first pair of free ribs occurring on the sisteenth; then follow fire others that have ribs connecting with the sternum by costal ribs; serenteen anclyylos to form a sacrum fer the pelvic bones; and, tinally, we find seven free candal rertebre besides a pygostyle. All these segments are frecly morable upon one another, except those in the sacrum. In Merghs the odontoid process of the
secoml vertebra does not perforate the cup of the athas from behind, but both these segments, in common with many Ducks, present the interesting condition of having the lateral vertebral canals at the outer siles of their centra, for the protection of the vessels that pass through them. This camal is a very prominent feature thronghall of these cervical rertebare through the twelfth; in the first fice or six it has a fenestra in its lateral wall on either side. With the exception of the last few vertebrae in which it occurs, it extends nearly the full length of the centra, while its inferior wall includes the greater part of the parial parapophyses, and these latter being rather widely separated, we have as a result a broad area at the under side of all of these vertebrat where this construction obtains.

The hyapophysial canal is fomed in the sixth to the twelfth, inclusive, but in none of these does it elose in entirely, though the processes approach each other reey near in the last-mentioned rertebna.
Axis vertebra has a prominent hyapophysis, but it is missing in the third rertebra, and this process does not make its appearance again until we find it as a conspicuons median plate in the thirteenth. In the fourteenth it is smaller, and althongh still in the rertical plane, evidently moved slightly to the left of the median line. This last condition is more pronomeed in the fifteenth, while in the sixteenth, where it still possesses considerable size, it is carried so far to the left as to be nearly in the same plane with the side of the rertebra, though it still remains vertical. Sixteenth vertebra also has lateral hyapophysial corna, which makes this peculiar shifting of its mid-process all the more striking. I am mable to say at present whother this is a constant condition of affairs or not. The dorsal series also have hyapophysial processes ; these are at first short, with spreading cornua, to gradually become longer and lose their terminal bifucation, and again grow shorter, to finally disappear on the first sacral, or dorso lumbar.

Axis has a thick and heary neural spine. In the following six or seven segments this gradually becomes longer, lower, and thinner. to be absent entirely in the tenth cerrical rertebra. In the fourteenth it re-appears, aud from it, baekward, it gradually assmmes the broarl, oblong plate which is perfected in the dorsal series. The vertebret of this latter region are restricted in their movements upon one another by the many interlacing tendinal and metapophysial spiculat among them.

In the cervical region the neural canal is celindrical in form, and owing to the fact that neither the pre- or postzygapophysial facets are upon spreading limbs, in its anterior division this tube is wonderfully well protected, its walls being nearly continuons from one vertebra to the next. This condition does not obtain in the latter half of the cervical region, however, where the prolongation of the aforesaid apophyses lend to the dorsal aspects of the vertebre, wheu riewed from above, that familiar capital-letter-of-X appearance, with the extremities of the lines alternately articulating above and below.

This disappears again in the dorsal seriers, where they are closely interlocked with each other, and the neural tabe once more becomes continnous. For the rest we find that the "heteroccrlous" plan of artienlation prevails among these vertebre thus far described; that the centra are much compressed laterally in the dorsal region, where also the transrerse processes are unnsually wide and some of their spienliform interlacements more than commonly broad. With the exception of the atlas thes are all puermatic.

The pair of free ribs that are attached to the sixteenth rertebra are long aud pointed, with free extremities. They do not, however, bear epipleural appendages.

Nothing peculiar marks the ribs of the dorsal series nor the hæmapophyses that connect them with the sterum. The epipleural appendages are large and all are closely, though freely, articulated with the posterior borders of their ribs.

The first pair of sacral ribs are like the clorsal ones, except they have no epiplenral appendages. The last two sacral pair, however, anchylos with the pelris, and their hremapophyses do not reach the sternum.

Of the sternum (Figs. 3 and 4).-Mergus has an interesting form of this bone, and it differs in a number of points from the sterna of its supposed nearest allies among the Dncks. The bods is of an oblong outline and moderately well concaved above. Right over the anterior border in the median line there is a single semi-globular pit, but there appears to be no pneumatic foramina of ans size at its bottom.

The costal processes are large, prominent, and quadrate plates. They extend behind the first hemapophysial facet. These latter articulations are six in number, and the lateral borders behind them are sharp, curring at first outward, before they extend baekward, to the xiphoidal margin.

Upon the conces, pectoral aspect of the bone we are to notice the principal museular lines. These extend directly backward, one on either side, from the lip of bone that orerarches the outer end of the coracoidal groore, to pass along the inner side of the racuities behind, where they become rers faintly marked.

A transrerse straight line limits the xiphoidal extremity, and engrafted upon this in its middle we tiud a distinct convex prolongation of no great size, its base being rather less than one-third of the border upon which it occurs.

Just over this latter, in the apertures of the postero-external angles of the bones, we find on either side a large, oral fenestra.

A sterumm of this shape, differing as it does in this particular from the notched style of the bone among most of the Geese and Ducks (for it is the same as we find it in Glancionetta), forms an exception to the character laid down by Huxley for his Chenomorphe, which inelndes the subfamily to which Mergus belongs. (Fig. 3.)

The extensive coracoidal beds of the anterior horder are separated by a pit in the median line, and not a vestige of such a thing as the mambriam is to be seen.

From the pit just mentioned to the far-projecting earinal angle a straight osseous welt is raised, above which the anterior margin is convex and sharp.

Fig. 3. Sternum of Jergus serrator: pectoral aspect: life size. By the author, from specimen 10626, Smithsonian collection.

The keel itself is low and extends clear back to the hinder margin of the bone proper: its inferior border is thickened and gently conrex thronghout its extent.

As a very good example of the appearance of the sternum among the Ducks I present a drawing of the pectoral view of the bone chosen from the American Eider (S. dresseri, Fig. 13). In this form the profoundly two notehed hinder portion is well shown, and here, too, we observe that the anterior part of the keel does not project as in Mergus, though it is not an meommon thing to tind it soeven among true Ducks.

Of the shoulder girdle (Fig. 5).-Most Ducks, and I believe all the Mergansers, hare a non-pneumatic pectoral arch. It is the case in our present subject, and in a number of the former at my hand.

The furcula typifies the broad U-arch in Mergus, where the curve is continuous and muchecked by the presence of a hypocleidium.
The bone is, as a whole, slightly curved backward, so each limb presents a couvexity to the front; these become broader and laterally compressed as we pass in the direction of their free extremities.

Either head very gradually tapers off to a point, and these produced ends ride over the seapule when the areh is articulated.
Projecting from their upper borders we find a single distinet and vertical process of bone that is quite characteristic. In the Eider this is in cartilage, but otherwise the fourchette is formed in this Duck very mueh the same as in the Merganser. (Fig. 14.)

In a coracoid we find the summit of the bone much produced above its articulation with the scapula, and compressed in the same plane with the shaft below it in such a manner that when articulated with the sternum the front of the bone is directed forward and outward.

The sternal extremity of the bone is very much expanded, and it also is found in the same plane with the general compression of the shaft.

Behind it is scarred by museular lines, and shows a large luniform facet for the groose on the sternum.
The scapular process of the coracoid is to

Fig. 4. Sternum of Mergis serrator; right lateral view; life size. By the anthor, from specimen 16626 , Smithsonian collection. a great extent aborted; its superior margin being insufficient to accommodate the entire width of the scapula.

Nothing of importance distinguishes the glenoid carity, it being formed, as in most birds, in the proportion of one-third on the part of the scapula and the remainder by the bone under consideration.
The scapula is much arched, and nearly of an equal width the entire length of its blade, its apex being rounded off. We find the bone considerably compressed in the vertical direction throughont, and the length of the chord measured between its extremities less than the length of the coracoid.

Of the pelris and cuudal certebra. - In order to better illnstrate the fact that the pelvis in the Mergansers is constructed upon the same plan as that bone in other anserine birds, I have contrasted it, in Figs. 7 and s, with the pelvis of the American Eider Inek. It will be seen at a glance that all the characters present in the latter are also to be fomm in Mergus, simply sommehat modified in concordance with its life as a diver.

Fig. 5. Left scapula and coracoid, with furcula detached, Mergus serrator; life size. BS the author, from specimen 16626, Smithsonian collection.

The ribs of the first three vertebre that anchylos in the saerum have already been deseribed when speaking of these bones in general. Next to them we find that the three succeeding vertebree throw out their apophyses to the pelvis and firmly anchylos therewith. After them we fall into the deep and oblong pelvic basin possessed bey this bird, and the next three vertebree send their processes directly upward. They are followed by a series of eight more that gradually approach the free caudals in form. The anterior one of these has the strongest lateral processes, but they are fond to abut against the ilia on either side at a point anterior to the middle of the isehiac foramen, and not right behind the cotyloid eavities as in many other birds. The imer margins of the ilia anclyglose with the onter ends of these sacro-vertebral apophyses, from the acetabula, baekward, exeepting the last one.

Opposite the cotyloid cavities we find the enlargement to accommodate that part of the spinal cord where the sacral plexns is thrown oft; the openings for the exit of the latter are double, being placed one above the other.

Viewing this pelvis of Mergus serrator from above, we alwass find, jutting out in front, a tuft of bony spienle that form a part of the same system that strap, the dorsal vertebre together.

The imer margins of the ilia meet and anchylos with the top of the
common neural spine of the leading vertebre, conserting the ilioneural groores into canals.
Each preacetabular portion of an ilium is much shorter than its postacetabular part, aud also on a very much lower level. In front its border is emarginated, transversely trumeate, and somewhat serrated. The surface of the bone is concare, and for the most part looks upward and outrrard.

Behind the acetalulum most of the ilium is deroted to the lateral aspect of the pelvis.

Turning to this side of the bone, we notice a pro-pubis of considerable size in front of the cotyloid ring, while the post-pubic element is a long slender rod, extending directly between the under side of the obturator foramen and the posteroexternal angle of the ischinm, with which it articmlates. Beyond this, it trebles its width aud curves rather abruptly toward the fellow of the opposite side. A rery narrow, open strait comnects the obturator foramen and the obturator space; the former being rather smaller than usual and the latter very large.

The lower margin of the ischium isconcave downward and yerysharp, while the posterior border of the pelvis, formed by both the ischimm and ilinm, is perpendicular to the long axis of the bone. It shows one or two indentations that are not to be found in the same pelvic border of the Eider.
The acetabolnm is large, with its inner and outer rings nearly of the same size ; an autitrochanter of morlcrate dimensions stamds between it and the auterosuperior margin of

Fig. 6. Right lateral view of pelris, caudal rertebre, and sacral ribs of Mergus serrator; life size. By the author, from specimen 16620 , Smithsonian collection. the large elliptical ischiac foramen.

Posterior to this latter aperture the ilium rises as a smooth dome Proc. N. M. $88-15$
atove its own postero lateral plane amd the ischium which lies below it.

In the present specimen this convexity shows a large fenestra in either ilimu at its anterior part. No such vacuity exists in the Eider nor other Ducks in my possession. In some specimens the bone in the same locality is so thin that I expect it occasionally occurs in those birds also.

Fig. 7. I'elvis of Mergus serrator: viewed from above. (Specimen 166 . Smithsonian collection.)

Fig. 8. Sime view of pelvis of Somateria dresseri. (Specimen 16989, Smithsonian collection.) Both figures lifosize. By the anthor.

As already stated there are seren free caudul revtebre and a pygostyle. The neural canal passes throngh all of the former and a short distance into the latter. Above it the neural spines are nothed in frout, and hare an clevated, stumpy process behind.

The ends of the shortened diapophyses of the first fiee candal are usually orerlapped by the ilia, but in the next segment these processes are much longer, to be longer still in the third and fourth vertebre. In the next two they again become shoter, to be entirely abortive in the ultimate one. In all they are broal and depressed.

Cherron bones are freely articulated between the centra of the last three or four vertebre of the tail; they are bifid in front and grow gradually smaller as we proceed in that direction.

The 1 ggostyle is here of considerable size, being an irregular quadri. lateral figure, with its lower margin thickened, and all the others thin and cultrate.

Of the appendicular skelcton; pectoral limb.-Wheu the skeleton of the mpper extremity is in a position of rest alongside the body, we find that the homerus is somewhat longer than the bones of the antibrachium, and the pinion also projects beyond them behind to the full extent of the last phalanx of iudex digit.

The humerus is characterized by a broad, proximal extremity, showing au enormonsly deep pnemmatic fossa, and a distiuct trench between the uluar crest and articular head, rmuing beneath the latter. Its eylindrical shaft shows the nsual sigmoid curres from radial and anconal views. Nothiug musual marks its distal extremity, where we find the trochlear tubercles for radius and ulna.

These latter bones are non-pnemmatic, in common with the remainder of the skeleton of this limb. The shaft of the radius is straight, whereas it is curred in the ulna, the eoneavity ocenming on the side toward the interosseons space.

The cyliudrical shaft of this latter bone is faintly marked by a double row of papillae for the secondaries.

In the carpus we find the two usual segments of forms common to the majority of the class.

In the pinion the bones are all remarkably well developed. Carpometacurpus has its main shaft straight aud of a caliber interwediate between those of the antibrachium, or larger than the shaft of radius and smaller than the shaft of ulna. First metaearpal is short and anchylosed in the usmal manner to shaft of index. The long trihedral pollex phaianx bears a distal joint, which is also the case with the second phalanx of index digit.

All the boues of the pelric cxtremity are non-pnenmatic, thougl the principal long ones hare sizable mednlary carities.

The femur has a very large head, which rises somewhat above the broad articular summit of the shaft, notwithstanding its crown is considerably exearated for the ligamentum teres. The axis of its neck makes an angle with the axis of the shaft.

Trochanter major is suppressed above, while on the anterior aspect its thin edge partly surrounds a sort of fossa, where in other birds the pneumatic orifices occmr. Its shaft is rather compressed from side to
side and bent rery slightly in the anterior direction. About its middle, on the posterion aspect, there is a prominent muscular tuberosity, and other lines or sears for mnsenlar insertion

Fig 9. Left tarso-metatarsiss; anterior view, Mergus sfrator: (Specimen 16626, Smithsonian collection.)

Fiti. 10. Same lone sec.u lion below
FIG. 11. Corresponting bont from ふomateria dresseri. (Specinen 16989, Smithsonian rollection.)

Fig, 12. Same bono as Fir. 11, seen from below. All these ligures life size. Drawn by the author from the specimens. are evident. Of the condyles the outer one is the lower, and it is profomily cleft for the fibular head.

The popliteal depression is represented hy a characterisitic conical pocket just above the internal condyle on the posterior aspect. The rotular chamel in firont is also deep, but does not extemd up the shaft a great distance.

From this same specimen I have illus. trated the patella of this Merganser clsewhere (Proc. U. S. Nat. Mus., Vol. vir). It is seen to consist of two segments, with an obliqne groove in the cartilage comnecting them. Through this the tendon of the ambiens musele passes.

Tibin-tarsn.s has a straight shaft that, mulike the femmr above it, is somerthat compressed from before back ward. At its proximal extremity we find a chemial process reared above its articular surface for the femur. Prominent cnemial ridges occupy the anterior aspect of this, as nsual. Of these the procnemial ridge is the higher and extends the lower on the imer side of the shaft.

The distal end of tibio-tarsus presents nothing peculiar. The groove anteriorly is deep, and the osseous bridge that spans it is thrown directly across. The external condyle is the broader in front, and its outer aspect is in the same plane with the side of the shaft, while the corresponding surface of the inner condyle lies beyond the plane of the shaft, for its own side.

Behind, these condyles still continne to be parallel to each other, but separated by an intercondyloid concarity that from its shallowness is searcely worthy of the name, while the condyles themselves really merge into a broad, articular surface in this locality.

The fibulu, when articulated, is fomud to rise above the summit of the tibia and project beyond it posteriorly. Its head is compressed from side to side, which gives it a very short, thanswerse diameter, while its antero posterior one is fully thre times as long. The articulation with the fibular ridge on the side of the tibio tarsal shaft exceeds in length that portion of the bone that projects above it, and equals in length the slemler portion that is fomml below. The connection between the bones along this ridge is of a ligamentons mature, and the distal fibular
end seems to be attached pretty much in the same way to the side of the tibial shaft. This latter articulation occurs at a point about the unction of middle and lower thirds of the shaft of the larger leg bone.

Fig. 13. Sternum of Somateria dresseri; pectoral aspect. (Specimen 16989, Smithsonian collection.) liy the author. Life size.

With the exception of its proximal fourth, the tarso-metatarsus is considerably compressed from side to sidr, much in the same way as we find it in the Urinutoridd. and to the same enul.

In orver to show that this is simply another example in the skeleton of this Merganser of a physiological adaptation of structure to meet a certain requirement demanded on the part of its labits, I have, in Figs. 9 to 12, contrasted this bone, in two views, with the same bone taken from a specimen of the American Eider Duck, a bird far less noted as an habitual diver. It will be seen at a glance that fundamentally these two bones are esseutially upon the same plan of structure, or, in other words, both are of an anserine type. The hypotarsus of this bone in Mergues consists

Fig. 14. The fureula of Somateria dresseri; lifesize. (Specimen 16089. Smithsonian collection.) By the author. of four vertical ridges-an inner large and longest one and three others
of equal length. They form the grooves for the usual flexor tendons passing to the toes.

Notwithstanding their lateral compression, the trochleae of the distal end are very large, their metian growes distinet, and carried all the way aromb. The imer trochlea is elevated uron the shaft, and only descents an lar as the hase of the middle ome. It is also turned slightly inwarl, and at the same time projects the farthest behind. The nsual foraminal perforation is seen in the furrow between the middle amd outer trochleme just above the cheft that divides them.

We find the decessmy motatarsal of a moderate size and elevated far abowe the imer trochear projection-mot artienlating with the shaft of the tarsometatarsus, as in many bids, but attached to a ligamentons structure stretching between the lower part of the hypotarsus and the twehlea above mentioned.

The hind toe which it supports is fully developed, with basal joint amid cha, thongh it is proportionately much smaller in comparison with the three anterior toes with their large joints.

These latter need no special description, they are articulated and fashioned as in the anserine fowl generally, as well as being conformable with the most usial arraigement in regard to mumber of joints allotted to the several toes. We may fancy that a certain amount of lateral compression is present in the phalanges of these porlal digits, but if it is so, it is rery slight, being little more in degree than is enjoyed ly like skeletal parts in the feet of the Anatimer. To present the characters of the skeleton of the Anatince more in detail, I have chosen for the purpose a specimen of the common Spoon-bill Duck (Spatula clypeata) and will now rapidly review its osteologrs.

OSTEOLOGY OF SPATULA CLYPEATA.

So far as its skeleton goes this bird is very closely allied to the Teals. a fact that perhaps might not be suspected on first sight from external appearances alone. Beyond its increase in size, the chief point in departure from this gans is seen in the emomons development of the premaxilla and a corresponding entargement of the mandibles (Figs. is to 1 s, I'm.r.).

In the dried and properly prepared skull of sputula, this premaxilla is an elegant, symmetrically tomerl, set delicate seroll of bone, and, so far as I am aware, mernaled byy amimilar structure anong rertehates. At the midale part of the anterion are there oceurs a thickening, winch in life supports the "nail" of the integumental sheath. Both this and the region on either side is guite thickly studded with foramina.

The external marial apertures are placed well back, as may be seen in Figs. 15 and 16, they being of a subelliptical ontline. Comparatively speaking, these oprenings are considerahly larger in the Swans and Geese, while in such a form as Glancionetta islandica they
relatively ocenpy a mid-site on the mandibntar side, the nasal being a broader bone. I have figured a side fiew of the skull of this latter Dnck in Cones's "Key" second edition, where this feature may be seen.
spatula and the Teals always have the extremity of the nasal median processes of the premaxillary remain distinct to a large extent in the eraniofacial region thronghont life (Fig. 16). This is also well shown in the Mallard, less so in Olor, and barely observable in Hutchins Goose.

Fig. 15. Right lateral riew of the skull of Spatula clypeata, of; life siza. From a specimen in the author's cabinet, and used throughout this article where this form is figured. l. lachrymal; $\operatorname{P} m x$. premaxillars: q, quadrate; $p t$, pterygoirl: $p l$, palatine; Jlxp, maxillo-palatiue.

Mobility of the cranio-facial hinge, however, does not scem to depend upon this condition, for in Glaucionette, where a considerable amomnt is enjoyed, this individualization of the nasal processes of the premax. illa does not obtain to such a marked extent.

Confining onrselves for the present to the lateral aspect of the skull (Fig. 15), we find a notorions anatidine character rery prononnced in Spatula, and this is the enormons derelopment of the lachrymal (l) and the consequent antero-extension of the lachrymo-frontal region.

The descending process of this bone reaches backwarl toward the long sphenotie apophysis, uearly to touch it in Glaucionetta, in which Duck it nsually lacks the terminal dilation so prominent in omsubject, and still more so in the Swans. The interorbital septum rare]s shows any deficiencies in its bony plate, the Golden-Eye being the only form in which I have met such a condition, and in this fowl it is very small. In all Anatifle the osseons pars phana seems to be aborted, simply a low, bony ridge iudicating where it is developed in other birds. The mesethmoid is developed, however, as a strong median abntment extending far forward beneath the craniofrontal region.

A racnity usually ocems thronghout the gromb, high up on the posterior orbital wall, though the foramen for the exit of the olfactory nerve is not notably large, and the one for the optic is distinct from the ontlying smaller nerre apertures abont it.

Most Ducks and the Brant have the track for the passage of the olfactory to the rhinal chamber an open groove, while in Olor it mas be practically orerarehed by bone.

As already intimated in a former paragraph, Spatula, in common with others of the suborder, had a greatly lengthened sphenotic or
post-frontal process, while the sinamosal prejection would hardly attract attention in any of them.

The infruorbital bar is long, nearly straight, narrow, and much compresserl from sile to site. On its upper elge beneath the lacrymal a little papilli form elevation is usually seen. Its

Fic. 16. Skull of Spatula clypeata seen from above; mandihlo rummeed; life size. Letters as luefore. quadrate extremity is slightly tilted upward before it sinks into the pit in that boue. This upwand deflection is best observed in the Swans, not being well marked in our Broad-bill. The maxillary (1 arx) extremity of the bar is in all firmly wedged in between the palatine and the dentary process of the premaxilla, being completely fused with these bones in the adult.

Anutide as a rule, and Spatula form no exception, 1 ossess a large and massive quatrate. This bone lass in them a broad and subcompressed body of a quadrilateral form, to the antero-surerior angle of which a spine-like onbital poress is superadded and rather deflected toward the median plane. The mandilmlar foot of this element supports tiro elongatel facets, placed side by side with their major axes extended in the transrerse direction. The imner of these fiteets is always the smaller.

At the mastoidal extremity of the quadrate we find a globular head, fairly divided in tro by a shallow groove ruming from before backward. This articular end is well incased by the surromnding boue.
The quadrato jugal and pterygoidal articulations require no special mention, they being much as we find them in a number of other water fowl.
Anctide have the lateral aspect of the cranimm smooth and evenly consex, while lower down a shallow and vertically elongated crotaphyte fossa "an generally he pretty well made out. I find it least pronomed in IIutchin's Goose, while it is quite strong in the Garrot. In all cases it is porluced downward upon the highly developed temporal wing, which forms the back part of the bony ear conch. This latter is conspicuons in having, in most Ducks, incmrling margins to photert it. These later are not so manifest in the Geese, and they are absent entirely in olor.

In Fig. 16 we have an upper view of the skill of Spetule, and this permits us to gain a very good idea of the enomons development of the premaxilla ($l^{\prime} m x x^{\prime}$).

The fronto lacrymal region we observe to be unsually elongated, and in this form concaved in a longitudinal median direction. This latter feature obtains also in the Mallard and the Teals, where it is quite as well marked, while, on the other land, in the Swans, Lrant, and Geese this fronto-lacrymal region is not so strikingly lengthened, being flat in some of the latter and mounded up in some C'ygnime.

The space between the orbital margins on this aspect shows considerable width, more particularly in such forms as Glaucionetta, where it is maked ly a longitudinal median crease.

The supraorbital glandular depressions for the nasal glands, so prominent in many of the Anks and other water forml, are here in the Anatide rarely well marked.

In Spatula they consist in a very narrow trimming off of the edge of the orbital peripheries, barely perceptible in the Mallard and Anas carolinensis. In Glancionetta they are better dereloped, but in this Duck they are really mored down so as to form one of the features of the lateral aspect of the skull (Fig. C3, u, Cones's "Key," 2d ed.). They are quite rell marked in the Mutchin's Goose.

Epatula, Anas boschas, and the Teals have a strongly incised notch on either side, at the anterior are of the supraorbital rim, which seems to define the posterion ending of the lachrymal bone. It is absent in the Garrot, but again characteristic in Swans and Geese.

The vant of the cranium behind is, upon this aspect, usually smootly and rounded. A lougitudinal crease may pass it in the middle line, and elerations on either side in some forms (Spatula, Olor) faintly indicate the divisions of the encephalon within.

Turning now to the under view of the skull of the Spoon-bill, we are to note the great con-

'fl c. 17. Under side of the skull tusatula elypeata; mandible re. 1.wed : lifo size. Samo specimen with MIx , maxillopatine, and the other letters as before. carity of the premaxillary, with its sharplydefined parial gutters for ressels and nerres an 1 their ramifications.

As is well knorne, all the Anatide exhibit the typical desmognat hous arrangement of the palatal bones. The maxils palatines mite in the middle line to form a large bony mass ($.11 x \mathrm{p}$), in front of which there occurs in all the Chenomorphæ, that I have been enabled to examine, a more or less cleanly cut elliptical opening, the remuants of a much greater racnity of other birls. In the Swans these maxillo palatines are
quite spongy ; in Brantacamulensis hutchinsii they mite with a firm lamelliform masal septum that makes a long abotment against the roof of the Thinal chamber above. This masal septum is entirely absent in Sputula, and illy developed in I has carolinensis and the Mallard.

It drawing of the basal view of this Duck illnstrates Comes'm "Ker," (Fig. is), where the above points may be compared with adrantage.
ln Neptula (and the arrangement, with a few unimportant minor differences, holds good for the gromp) the palatines (pl) are horizontally compressed at their anterior ends, where they form anchylosed schindrlesial attonlations with the premaxilla and maxilaries, as alreaty described. The body of one of these bones is slenterer along its middle length, separated by a wide interval from its fellow, and half the distame form the romer (r).

1ts "ascending process" is short, and is carried along the upper vomerine margin, where it mites with the oprosite palatine to form a lon-

Fig. 18. Rear view of skull of spatula clypcata.

Flg. 19. Rear view of skull of Glaucionetta islandica. Both figures lite size, from the specimens. Mandibles removed. Letters as before.
gitudinal, rib-like re-enforcement along the upper edge of that bone. It is only in this sifnation that the anserine palatines meet each other.

The joint that one of these bones makes with the corresponding pterygoid ($p t$) is a sort of mortise-and-tenon arrangement that very perfectly meets the requirements of the parts involved.

The palatines barely escape resting against the under side of the rostrum of the sphenoid, which passes immediately abore then. This is true of all the Amatide sof fir as I have scen.

As to the comer (r) proper, we find it to be a thin lamella of bone in the median line, supported, as pointed ont abose, by the rib on its upper margin develoned from the ascending processes of the palatines. This portion is carried formard by a thickening of the romer itself, somewhere beyoud its middle, as a protuding spine like anterior process.

This spine nsually rests in a groove formed by the union of the max-illo-palatines behind, thongh in the skull of a female Mallard before me not only this projection, but a good share of the vomerine plate has fused with this maxillo-palatine mass in part, to become immorably connected with them.

The lower margin of the vomer is sharp, and the whole plate is gently arched in such a manner as to make the upper edge convex along its continnity, the reverse obtaining below.

When speaking of the palatines I neglected to invite attention to the notch foum on the imer margin of either one of them abont opposite the anterior termination of the romerine plate. This noteh is conserted into a foramen in the Mallard, and entirely absent in Hutchin's Goose and the Whistling Swan.

Sputula possesses a pterygoid ($p t$) of the same general form it assmmes in any of the Anatide. Its shaft is short and straight, while its anterior end is mucil enlarged, first, by a descending lamina of bone developed upon it and, secondly, by the large sessile, eliiptical facet on its oppo. site side for artienlation with a similar facet on the sphenoidal rostrum. Anterior to this facet the pterygoid develops an upturned process of spine like dimensions, which, when the bones are in situ, is closely applied to the back side of the ascending process of the palatine. Below this process the pterygoid is deeply and roundly notchen to receive a peg-like projection on the palatine, which morably fits into it.

The projecting and rounded postero-external angle of the palatine extends below this ptersgoidal articulation.

Generally the lower border of the rostrom is rombled; it is very broadly so in Brant, though it becomes quite flat in Gilancionetta; there it may be carried forward as a projecting process.

The anterior ethooidal edge is always sharp, sloping forward and upward to become a median erest on the under side of that part of the bone which abuts against the frontal region for its entire length.

In Spatula the basitemporal region is quite broad, and marked by a median and rounded ridge. This is carried out upon the pointed lip of bone that under-laps the donble entrance of the Eustachian tubes in front. A decided dimple is found in front of the sessile and sumeriorly notched oceipital condyle, while the furamen magnum is large, of a cordate outline, with its apex directed upwarl.

Laterally wo find the descending temporal wings, with the nsmal group of foramina to the imner side of each, at the base of quite a wellmarked little fossa.
The plane of the foramen magnum makes an angle of about 450 with the hackwardly prothced plane of the basis cranii.

A posterior aspect of the skull of this Duek (Fig. 18) shows a conspicuous supraoccipital prominence, with a large, vertical, and elliptical foramen opening into the cranial casket on either side of it. The oceipital area is well divided off from the crotaphyte fosse by a raised ridge wheh surrounds it. These last-mamed depressions are separated in the median line by quite an extensive interval. I believe they never meet in any true Duck.

This description of the cranial base and posterior aspect of the sknil
in the Spoon-bill practically answers for the Mallard and the Teals, thongh, of conrse, slight differences do exist.

In Glanciontta ishendice the hasis cranii is proportionately flatter; the temporal wings less manifest; a separate ridge bounds the fossa for the merve and arterial formina externally, and the condyle is more prominent aud its superior median motch very depp. The vanlt of the (anninm is rery lofty in this Buck (Fig. 19), and the ridge bounding the orecipital area almost crest-like.
Speaking of the umsual herght of the eranial vant in the Garot, we fime this bind rery peculians constracted in this particular, for not only is the brain case of a size above the arerage for the gromp, but a cmrious and mot inconsideralle diplöic eavity overlies the whole top of the skill, extming as far forward as the mesethmoid. Here it is intermped by a pair on either side, one in front of the other, of deep and sharply defined chambers, with their apertures facing directly downward. This condition is not so promounced in a young female Glaucionetta, a spectmen of which I have before me.
lircoute has a very large brain-case, and umon the under side of the skill of a specimen of B. comarlensis hutehinsii we note that a guadrate has an area of no mean size, and neally horizontal, extending to the rear of its mandibular facets. In this Goose, too, we find a very broad and flat basi-temporal area, with the shield to the entrance of the Enstachian tubes nearly aborted. These latter appertures are wide apart at the situation nsmally protected by it. The tempmal wings are ferbly dereloped in comparison with the Cygnine, and the oceipital condyle is almost pedunculated. The group of foramina to its imer side of cither temporal wing is sitnate at the base of a well-defined fossa specially designed to receive them.

Finally, we observe that the form of the foramen magnm is more delliptical in outline rather than cordate, as we fomm it in the Ducks. A hove it the sumpoceipital prominence is very comspicnons, while the foramina on either side of it may or may not exist.

In the skull taken from a magnifient mate specimen of olor columbienus* I find the basitemporal triangle companatively rery small, with the dimple anterior to the condyle deep and having pratial ones phaced side hy side in front of it. The descending temporal wings are enormonsly developed, each one overshadowing a considerable excaration to its immer side.

The condyle is relatively smaller than it is in the Geese, and its smperior noteh not so well marked, while the foramen magmm is quite circular in outline. Ellintion racnities may may mot exist at the sides

[^0]of the fairly well-pronounced smpraoccipital elevation. The plane of the occipital area is nearly or quite perpendienlar to the plane of the basis cramii.

Anatide have thein skulls more or less perfeetly permeated by air, and when properly prepared are really structures of great beanty, as is the glistening white skull of the Swau before me, which is so exceedingly light for its size aud withal so graceful in outline.

Few and unimportant are the differences that are found to exist be tween any two momfibles of representative Anatille, the general type of the structure being quite a miform pattern, as it prevails thronghout the entire group. Perhaps Spatula offers us as great a departure from the common form of the anatidine mandible as any American Duck we have, and even bere we find, on side view, that it possesses all the essential characters of the bone as found in the group. Seen rpon this latter aspect we have presented us for examination the lamelliform and rertical angular processes. These are greatly produced directly backward, to be abruptly recurved upward at their extremities. This is the style also in Olor, but in Hutchin's Goose they are saber shaped aud gradually recurve npward. Bejond this process the articular facet projects from the ramal side, and at a varying distance (for the species) in frout of this we find a constant process for mnscular attachment. This last is situate at abont the middle of the deepest and most plate-like portion of the ramus, and in a Swan is ridge-like, being conneetel with the coronoid process on the edge of the bone immediately above it.

In front of this the ramal vacuity-a uarrow slitis usually completely closed by the splenial element.

The bone now becomes shallower in the vertital direction, its superior and inferior borders ronnden, while a well-defined gutter for the passage of nerves and ressels marks its entire length.

As a rule, among the Anutidu the symphysis is rather deep, rounded beneath, and correspondingly concare abore, the under side being thickly studded with rascular foramina. Spatulu has a somewhat different anterior ending from this, as is shown in Fig. 20.

In the middle line in front a sort of "nail" is developed like the one found on the superior mandible, though not so strong. The saperior ramal margins are continued round this projection, forming its edge, while the suoon-like dilatation is insured by the onter ramal sides shelving away from this upper borter, so as to face upward and ontward rather than directly outward, as they do posteriorly.

Fig. 20. Mandible of Spatula clypeata: scen from abose; adult σ^{*}; life size, from the specimen.

The form most common for the mandible to have, as viewed from above, is well exemplified in Gilaucionetta, as shown in Fig. 21, which presents this aspect of the bone in the Carrot.

The articular projections lie nearly in the horizontal plane, and each one supports the two concarities for the mandibular foot of the quadrate. A bather slender intwined process directed upward and toward the medial plane projects from the inner one. This may present a small phenmatic foramen at its extremity: Beneath either of these artienlar portions of the mandible, and to the inner side of the angular process, we discover a deep conical fossa, with its apex to the front.

It is intended for musenlar insertion, and is pre-

Fig. 2]. Mandible of Glaucionetta islandica: seed from above, adult δ^{\prime}; lifesize; from nature. sent, I believe, throughout the group.

The mandible is very imperfectly pnemmatic, particulany in the Brant, where the bone sometimes, if wot alway, entirely lacks this comdition.

For the general form assumed by the hyoidean apporatus in these birds the reader is referred to my digure of these parts as they oceur in Branta c'uadensis, in Cones's "Key," second edition, on page 167 (Fig. 7コ).

Here we tind an elongated elliptical piece in front, of some wi?th, which represents the glossohyal and absorbed ceratohyals. It develops a median facet anteriorly for articulation, with a cartilaginous rod, which passes into the soft part of the tongue proper.

This glossohyal is longitudinally concared beneath and correspondingly convex above; it articulates with the fused basi-branchials, the first one of which is by far the stonter element, the second almost spiculiform in its dimensions, and produced by a cartilaginous tip behind.

The thyrohyal elements consist each of the two usual parts, and these greater cornua curl up gracefully behind the skill, after the fashion of the class generally.
Withont entering upon details, I find after careful comparison of a sufticient number of skalls, that of the Teals, the Blue-winged species (A. discors), more nearly approaches Spatula than any of that genns, while, on the other hand, a very close resemblance is seen to exist between the skull of spotule amd that of the Mallard, the most evident points of difference in these last being the shape of the premaxilla and the more robnst type of skull possessed by the Mallard. With but very few execptions, l believe I have shot every species of Duck in this comntry, yet, at the present witing, I regret to say that I have not at hand the skulls of the genera Itafilu, Anas strepert, nor A nas penelope,
and it will be very interesting to compare these forms on some future oceasion with those described in the foregoing paragraphs.

It is a well-known fact that the umber of vertebre in the spinal column of the Anatidee is by no means constant. Even genera supposed to be quite nearly related may differ in this particular, so that careful records in this direction are very much needed, and when a sufficient number have beeu taken to insure absolute accuraey such data will be of service.

In the subjoined table I have but little to offer, but it is the resuit of a eareful count in each ease, and will go to show some of the differences referred to and the method of comparison.

Species.	Number of vertebrat in cervical region withont free ribs.	Vertebra that bear firee ribs not reaching sternum.	Dorsal rerteb)ae (inclusire).	Tertebire eonsolidated with prlvis (inclusive).	Free caudal rertebrze (to which prgostyle is to be added).
Olor columbianus	22	231	24 th to 28th	$29 t h$ to 45 th	46 th to 52d.
Spatula clypeata	15	16 th	17th to 21st	2216 to 37th	sith to 44 th.
Anas discors	15	16 th	17 th to 21st	2201 to 37411	3 3ill to 43d.
Glaucionetta islandica	15	16 th and 17th	18 th to 21st	$\underline{2}$ 2l to 3ith	Bothe to 436 l .

Now, in the case of Sputula and Glaucionetta, in the specimens before me, the thirty-eighth vertebre, thongh free and really a eandal, lies within the grasp of the hinder ends of the iliac bones, whereas in the Teals this segment is found one rertebra's length behind them or entirely withont their grasp. It will be seen, however, that this does not affect the total count, it remaining forty-four for the first-named genms and but forty-three for the Garrot. I mention this because specimens may yet be found where this thirty eighth vertebra has united with the pelvis, as from the position it occupies it is perfectly possible for it to do in the genera mentioned.

The general characters of these segments as they are exhibited by most Ducks are rery well shown in Spatula.

The atlas has its cup perforated by the odontoid process of the atlas vertebra, and is characteristies in having the lateral cauals-a feature, so far as I am informed at present, that is common to the Anseres.

An open carotid canal is provided for by the sixth to the twelfth rertebre, after which a strong median hypapophysis takes its place, and this becomes tricormuted in the sixteenth segment and first dorsal, while in the eighteenth and nineteenth it is a long median plate.

The fifth and sixth cervical usually has the best-marked neural spine, which is there a long, though not high, median crest. The lateral canals in the first half of the cervical region are long and tubular, while the parapophyses are co-ossified for nearly their entire lengths with their sides. Anatide possess the "heterocolous" type of articulation among the centra of the spinal column. A strong hypapophysis is found on the second and third cervical vertebre, to be much reduced in the
succeeding one, while the following segments in the skeleton of the neck are notably hroal and lather long. In this region one thing is sure to attrate our attention, and this is the brevity of the pre- and postgyapophyses, an arrangement which has the effect of very materially reduring the size of the intervertebral spaces or apertures.

In the domal region the reptebrae are not only locked together by thein close-fitting nemal spines, but a rery extensive system of mẹtapophysial and other bony spicula renter the strapping still more effieient. The thas erse processes are very wide, too, so that, notwithstanding the fact that these segments are all free, the mobility enjoyed by this division of the colmmn is rery much compromised. Pnemmatieity is but very imperfectly extended to the vertebre of the column, especially in the cervieal region; while this is likewise true of the Swans, this condition in them is very mnch more complete, and their dorsal rertebra are wonderfully well providod for in this particular.

The ribs sem always to be non-pmematie, with large anchylosed muciform processes, being wide and flat in the body above the points where they are attached. Glancionetit is notorions for both of these chatacters.

Nutulu has on one side seren ribis that connect with the sternum by costal ribs: one pair behind these, where the hremapophysis fails to reach that bone, and, finally, a small floating hemapophysis clinging to the posterior margin of the latter. The last two pairs of vertebral ribs come from the sadrm and are without uneifurm processes.

This arrangement of the ribs prevails also in Anas cyanoptera, while in Gilancioncta the series leads off" with two pairs of free ribs, one on the sisteenth and one on the seventeenth vertebra, the following six connecting with the sternum, and three pairs coming from the consolillated sacral vertebre, making in all nine pairs of ribs to each side, the last three not bearing unciform processes.

In Olor columbiamus the arrangement is again entirely different. Here we find the series leading off with oue pair of free ribs (on the twentythird vertebra), followed by nine pairs that connect with the sternum by costal ribs and completed by a purely floating pair that neither joins with the pelvis above nor the stemmm below. This gives the Swan eleren pairs of ribs. Of these the first, and the last fom are withont menform appentages. In those ribs where they do ocenr they are anchylosed to them and are not notably large. The last fom pairs of ribs come irom beneath the ilia in this Swan and curve far backward, reminding us of a combition that is still more prononnced in the Loons. Nor is this the only feature in Olor wheren it resembles that family, as we will see further on.

This Swan has a low median hopapophysis on each dorsal vertebra, and the nemral crests of these segments are comparatively low, being laced together by long spiculie, as we described them for the Dueks.

The skeleton of the tail is much as it is in Spatula and Teals, in
whin genera the diapophyses are wide and sjreading, while beneath, the ventral apophyses are auchylosed to the centra non which they occur and hook forward over the preceding vertebral body. The pygostyle in these and most forms of the group is somewhat elongated, of an irregular quadrilateral ontline, with thickened posterior border.

Gluucionetta has very wide and spreading transverse processes to its candal vertebrae, and the cherron bones upon the last two are free and rest mainly unon the intervertebral eartilage, as a greater series of them do in the Swans.

Turning our attention now to the consideration of the pelvis, we find this compound bone in Spatula presenting us upon its dorsal aspect the following points for on examination: The ilio-nemal canals are completely closed in by the ilia meeting and anchylosing with the crista of the leading sacral vertebre. This is the case, I believe, thronghout the entire order. On either side of this the pre-acetabular portion of the ilinm is longitudinally coneared, each anterior border being emarginated by raised bone and embellished with a few projecting spienlæ.

The post-acetabular sacral portion of the pelvis is in general in the horizontal plane, being pierced in in imegular manner by a feir scattered aud small interdiapoplysial foramina, while a median furrow, deepest behind, marks its entire length.

From this part of the pelvis the sides slope gently away. The posterior margin is more or less unerenly notched; the notch indicating on either side, however, the point of miou between ilium and ischium is constant both as to occurrence and location. So far as we have thus described the bone it will answer in general terms for the Teals, but in Glaucionetta the preacetabular area is notably shorter, while behind the bone is more spreading,

Fig. 22. Dorsal riew of the pelvis of spaitula clypeata. Size of life. the interdiapoplysial foramina far more numerons and larger, and, finally, the posterior margin is nearly even. Upon the lateral aspect of the pelvis in Spatula we find rather a large cotyloid ring, surmonnted at its upper and back part by a modest antitrochanter. The ischiac foramen is extensive and subelliptical in ontline. Behind this we sometimes find, both in this species and in the Teals, a thin tract of bone, which thinning may be carried to the point of forming another foramen, or a post-ischiac foramen, which is quite large in some specimens.

Proc. N. M. SS-16
llauch 26,1889.

In all the Indelee that I have examined a pro-pubis is to be found jutting forwarl from its usual site. This is the ease in Spatula. Behind this a small obturator foramen, nearly closed in, is to be noted, while the obturator space is very large amd completely surrounded by bone behind, through the foot-like preess aftorded by the ischimm. This latter mojection articulates with a facet, intended for that purpose, on the upper bordrer of the post-pubis.

The post-pubis is a slender rod as it passes beneath the obturator space, but after its articulation with the ischinm posteriorly it has its width nearly donblet, and in Glancionettu the himder ends are slightly enlarged. This latter Dnck leparts from the above deseription principally in such a minor detail as having a relatirely much larger ischiac foramen and longer obturator space.

In all of these species we find the pelvic basin upon the ventral aspect rery eapacions, both as to its depth and width.

As I have already stated elsewhere, the pelvis in Olor has a very different form from that bone as we find it in the Ducks. It assumes a shape that at once brings to our mind the mergine pattern, with its greater length as compared with its width; the almost entire disappear-

Fiti. 23. Left lateral aspect of pelris of Spatula clypeata; life size. Same specimen as Fig. 22.
ance of the interdiaponhysial formmina, and the broad, paddle shaped extremities of the post-pubic elements. This model sees its extreme modifieation in the Pygopodes; and if we remore the intrasternal chamber for the aceommodation of the tracheal loop, we find in the stermum, too, of the Swan a great deal to remind us of that bone in Urinator.

Sputula possesses, in common with most Ducks, a completely nonphemmatic shoulder girdle. In it we fimd a broad, U-shaped furenta, deroid of hypocleidimu and with its long, pointed, clavicular heads extemding almost directly backwart. On the upper side, whene either of these latfer merge with the limbs, we find a pecular little peg-like process, that is quite characteristie of most Anatide. The scapula is long aיnt curver, the curre boing in the plane of its blate, with the convex border mesiad. Its posterior end is simply rommed off, and its head makess a firm articnlation with the broal, scapmlar process of the coracoid.

This latter bone has its shaft much compressed fiom before, backward, while its sterual extremity develops an unusual expansiou, the inferoexternal angle or which is truncated.

Anas discors agrees in its pectoral arch, in the main, with the one just described for the Broad-bill. It has, however, a rudimentary hypocleidium present.

This latter feature is entirely absent in Glaucionetta, where the furcula is very strong and its U rery broad. Otherwise the bone is generally marked by all the characters it bears in the Ducks. The blate of the scapula in Glancionctta is much arehed, and shorter and broader than it is in the Teals. The coracoid presents nothing peeuliar, having much the same form that it has in Spatula, thongh it agrees with the Teals in having a comparatively longer shaft.

Aside from its greater size, Olor possesses a scanula very like that bone in Glaucionetta. The Swan has its coracoid, however, very short and thick-set, and does not at once suggest to us its family relations, though a moment's study is sufficient to trace the modifications and resemblance. The unique form assumed by the furcula of this stately fowl is well known to us. Its clavicular heads are long drawn out to terminate posteriorly in sharp points. Moreorer, the bone is highly pnenmatic, the foramiua being found well up on the onter aspect of either limb, in a longitudinal exearation that there occurs. These clavicular limbs gradually approach each other as they descend, aud when they come close to and opposite the middle points of the anterior and vertical borders of the tracheal entrance to the sterum they are reffected upward, and unite as a U-arch in the median line just bencath the mambrimm. The anterior aspect of this secondary arch is convex, while behind it is much concared, especially at its highest point, where a small circumseriberl pit oceurs. The object of this morlification of the fourchette in the Sran is to permit the tracheal loop that enters the carina of the sternum a passage-way, but the requisition of the entire arrangement is one of those problems in anatomy which, I believe, still awaits a fimal solution.

The sternum affords another instance of skeletal likenesses between

Fig. 24. Left lateral aspect of stermm of Spatula clypeata; life size. Same specimen as before.
the genns spatula and the Teals; indeed, this bone in the latter genus is to all inteuts and purposes the perfect miniature of the sternum of
the former Duck. On its dorsal aspect the bone is much concaved thronghout and perents a single, merlian, pmenmatic foramen just within its anterior horder: This aperture, thongh a smaller one, is also seen in the (zarrot, but the sternum of that Duck is a non-pmeumatic one.

It will he observed from Fig. 2f that the stermm of the Spoon-bill possesses quite a mominent, peg-like mambrimm, and that its sharp. anterion carimal borter slopes to the front, forming an acute angle with the convex and ribbed inferior margin of the keel at their point of intersection.

This keel extends the entire length of the stemal body, and is withal rather a deep one. The usual swell that fortifies it in front is uncommonly broad. Above the mambrinm, in

Fig. 25. Under view ol sternum of Spatula clypeata; lifesize. Sane bone as shown in Fig. 24. front, the coracoidal grooves mite in the median line, and the common bed thas formed is carried out laterally, on either side, to a point opposite the middle of the base of the costal process. These latter projections are rather lofty and prominent, each being of a broad, quadrilateral outline.

Either costal border ocenpies less than half of the lateral margin, the remainder being somewhat cinred and cultrate.

Regarding this bone from a pectoral aspect (Fig .25), we notice that the form of the sternal booly is oblong, with a slight outeurving of the lateral xiphoidal processes behind. These latter form the external boundaries to the large subelliptical vacuities, one on either side of the hinder extremity of the bone; but they fail to convert these apertures into true fenestre, from the fact that their inturned tips never reach the external angles of the mid.xiphoidal prolongation, as shown in the figure. This latter projection always has its posterior margin fortified by a raised and thickened edge, which is eentimons with the rib of the inferior earinal border.

The principal musenlar line seen upon eithen sidie of this wall of the stermm, extembs directly from the midale point of that lip of bone which mulerlaps the onter end of the comacoidal groove, to follow the inner edge of the xiphoilal notel to the apex of the postero external angle of the mid projection, traveling the entire length of the stermm, of comise, to dos sio.

Now Gilancioneffe istamdica lass a stermmon of an entirely different form from the bone as I have just deseribed it for sputula and the Teals.

In the first place, its body is relatively mach shorter for its width than it is in those Ducks, while in front the manubrial process las entirely disappeared. Again, the costal processes are loftier and more conspicnous. The xiphoidal extremity of the bone is very broad and is pierced well within its hinder margin, on either side, by an elliptical foramen, as shown in Fig. 26, where it will also be observed that the carina does not extend the entire length of the sternal body, but stops short at the

Fig. 26. Pectoral aspest of sternuas of Glaucionetle islandica; life size. From a specimen in the collection of the author.
middle point of a raised line, that, being produced as it is, is tangent to the posterior ares of the xiphoidal fenestres.
The muscular lines take about the same course as they do in Spatula, with the execption that their posterior ends are inelined inward rather than ontward, as in the form mentioned.
This form of stermm agrees in many particulars with the bone as we find it in Mergus, thongh in the Eider Ducks, as I have elsewhere pointed ont, the xiphoidal extremity is decply two notehed.

Such differences certainly are significant, and must be awarded their due share of weight in the search for affinities among the several forms of this order, and it will be interesting to fint with what similar charaeters they are associated.

Another engaging sulyect in the anatomy of the Anatian is the study of the rarions forms taken on ly the osseons labyrinth at the bifurea-
tion of the homehi. This is of a very mique shape in (ilumeimette, and I have figured a speefmen of it as it oeents in this. Duck in Cones's "Key," showing the derelopment from behind (second edition, Fig. 98).

It is my intention, on some future ocension, to make a thorongh comparison of these tracheal caskets as they are fomed in our American Anseres, continuing the labors of Garrod and larrell in that direction.
Anseres always have the extremities powerfully developerl, and in consequence we find strong skeletal supports for their pectoral and pelvic limbs. The bones that enter into them, however, rarely offer anything peenliar or make any maked departures from the average type of the skeleton of the parts in Ares.

In Figs. 27 and $3 t$ of Cones's Key I offer drowings of the pectoral and pelvic limbs of Glaucionetta islandica, and they give a rery good illea of these bones as ther occur among the Ducks generally: It must he noter, howerer, that in Fig. 27 (of the "Key") amother small joint must be added at I), in order to perfeet the limb. This part of the skeleton in Glunconettu is completely non-pnemmatic; not the case with mans other 1)ucks.

It must likewise be observed that in Fig. 34 the patella is not shown, whereas I believe this fowl possesses one in common with other Dncks.
Professor Cones lettered these two drawings of mine himself, and by an oversight has mate in Fig. 31 am . point to one of the trochlere of tarso-metatarsus instead of the accessory metatarsal.

Olor, the Teals, and the Spoon-bill all have a perfeetly pmemmatie humerus, the foramina being foum at their usual site.

In the last-mamed species this bone is considerably longer than the non-pneumatic ulna and radius. Its radial crest is rather low and short, while the ulnar one curls conspicuously over the prematic fossa. Between this latter and the hmmeral head a deep notch, or rather groove, is found.

The shaft is of a glistening whiteness, and composed of a wonderfully compact tissue, and shows scarcely any curve aloug its continuity. The distal extremity presents the nsual characters, the obiique and ulnar tubercle on the radial side and a broad passage for the tendons on the other.

Along the shaft of the ulna we notice a faintly pronomed row of papilla for the secondary quill-butts, a longitndinal muscular line marking the opposite side. This bone is considerably bowed along its proximal third, while, on the other hand, the radins is nearly straight. The two carpal elements which remain free thronghont life in Ares gencrally are here present, and of a comparatively large size. Uluare in most Ducks, and less su in the Siran, shows a strongly-defined groove down its ancong aspect for the lorgment of the tendon which there passes.

Carpometacarpms presents the usual form, and its main shaft is more than two thirds as long as the radins. There are two phalanges in pollex digit, as there are three in index, the bade of the proximal joint of
this latter finger being narrow and solid; the little joint behind it extending rather more than half way down its posterior border.

Among the Swans the general plan of the limb is the same, but the humerus, an exqnisitely beantiful bone in these birch, is but very slightly longer than the ulna.

The skeleton of the pinion is quite as we find it in the Ducks.
I have jet to find a true American anserine bird that possesses a pueumatic bone in its pelvic limb. All the species before me entirely lack this character.

In Sputula the trochanterian ridge of the femur has a thick, curling crest on the anterosuperior aspect of the bone, but at the summit it is leveled down to the same plane with the articular surface. The head is rather large and sessile and the excaration for the round ligament shallow.

We find the distal extremity unusnally large; indeed, all the bony structures that enter into a Duck's linee-joint are large and massive. This is particularly the case with the condslar extremity of the femur in Glaucionetta, where these prominences are powerfully produced behind, and a wide and deep cleft splits the outer one for the fibular head. In this form, too, a deep pit is found in the popliteal fossa.

Returning to the femur of spatula, we note that its shaft is nearly straight, being marked by the usual muscular lines, while the pit just spoken of is absent. The rotular chanuel extends slightly up the shaft above the condyles, whereas in Gilaucionetta this is not the case, and in this Duck the femoral head is notably large and extensively excarated on top; the lower third of its shaft is somewhat borred to the front and a little twisted, recalling to our mind the power of that peeuliar arch as exhibited in such a marked degree in Urinator.
The Spoon-bill, and I suppose other Ducks will show the same, has an extraordinarily formed patella, being flat on top, wedge-shaped in frout, broad and concave behind, deeply excarated and arched below, while across its anterior face it is profomdly slit in the oblique direction for the tendon of the ambiens muscle.

In the tibio-tarsus we find a large, flake-like, and jutting procnemial crest, which curls toward the fibular side and ends abruptly high up on the shaft. The ectocnemial crest is also turned outwarl, but is low and thick. These prominences are but slightly elerated above the articular summit of the bone, while in Gluncionetta they are carried up in such a manner as almost to rival the Grebe in this particular, having very much the same form.

The tibio-tarsal shaft in Sputuld is straight, smooth, and subeclindrical. It affords at its outer side the usual ridge for the accommodation of the fibula. This is very long in the Garrot.

At the distal extremity we find that the entire end is considerably bent toward the immer side, a character it presents in many other Anatide. The intercondylar notch is for the most part rery wide and shal-

Low, besme decenest anterionly. Abore jt, in fiont, the direction of the decply excasated groove for the extensor temdons is inthenced by the oblignity of the bone spoken of above. The bony bridge that spans it is thrown directly across.

Nothing of particular interest marks the fibula, it having the form we nsually find in the class. In this specimen of the Spoon-bill its feeble lower emd anchyloses with the tibio-tarsal shaft at about half W゙ay down its length. It is rery much longer in Olor, where its method of ending is the same.

Equaling abont half the length of the leg bone it artienlates with, the tarso metatarsns also proves to be a strong, stont segment in the limb of this Duck. Its hypotarsus is flat and inconspienons, being marked by three vertical gronves for tentons. The fom ridges thus formed gradmate in size, the imermost one being the longest and most prominent. The sirles of the shaft of this bone are, for the major part, flat, a slight excavation being seen at the mper end of the anterior one.

The trochlea at the distal extremity are very prominent and well individualized by the deep clefts that severalls divide them. They all have median grooves passing aromd them from before backward. The mid-trochlea is much the lorest of the three, as well as the largest, while the immer one is placed the highest on the shaft, being at the same time turned slighty to the rear. The nsual arterial foramen oceupies its site, as in other birds.

Agreeing with the gronp generally, Spatula possesses but a feebly developed accessory metatarsal, with a correspondingly weak hallux composed of a basal phalanx and claw, the whole being suspended rather high on the tarsometatarsal shaft by ligament. This discrepancy in size of the hind toe is likerrise seen in the Swans, where it is even still more evident. Second, third, and fourth digits, however, having three, four, and five joints, respectively, are quite the reverse from this, being composel of bones fully in liceping, so far as their size and strength go, with the substantial segments of the limb to which they beiong.

Of these joints the basal ones take the lead in point of length, and it is only in the onter podal digit of the Dnek where we find that its pemultimate phalanx exceeds the joint that pucedes it in this particular

NOTES ON A SKULL OF BRANTA GANADENSIS HUTCHINSII.

The characters of the skull as they are seen among the smaller of om Ameriean Geese are well exemplifed in the suhject of these brief comparative notes.

This specimen of Branta I collected several years ago on the Platte liver, in Wroming, and prepared it as a skeleton at the time.

I present four figures, giving the fom principal Views of this Goose's skull of the size of nature. Viewing it from the side, we find a superior osseons mandible of the form 1 mentioned in the syopsis of chatacters,
but much shorter than in Ducks and Geese generaliy. We note here also that a partial septum narium is present, which is absent in Aleryus and not a constant character among the others.

Fig. 27. Skull of Branta canadensis hutchinsii; right lateral view; life size. From a specimen in the author's collection.

The lacrymal has the broad descending process, but not so enormonsly expanded as we find it in the Swans and in Glancionetta. It will also be noted how this tends to approach the sphenotic process of the opposite side of the orbit, which it nearly succeeds in meeting in the Golden Ese.
Again, the condition of the interorbital septum as it is generally formed among the Ducks and Geese is well exemplified in this Goose. Fenestree occur in the region of the exit of the first pair of nerves, but the center of the plate is impervions. Attention is invited, too, to the form of the palatine, quadrate, and ptersgoid on this lateral view.
The crotaphyte fossa is small and inconspienons, and confined entirely to the side of the head. As in all Anatider, the entrance to the auricular chamber is thoronghly walled about with bone, withont presenting any flaring wing-like extensions as we sometimes see in birds.

The unnsual size of the brain case in Hutchin's Goose is, perhaps, better appreciated upon a direct posterior view than it is here on our lateral one. Comparatively speaking, it is far above, I think, the arerage for a bird of its size.

Still regarding this skull from the aspect presented, and to make some of its characters still more evident by contrast, we will place it beside the skull of IVergns, already described above. We note the difference in the form of the bill; the presence of the cranio-facial line in the Goose, while it is absent in the Merganser. Both have the narrow depressions along the margins of the orbits for the nasal glands, but posterior to this the Goose has the dome like rault of the cranium so characteristic of the more highly organizel types of the Anatider, while we see that this region in the Merganser is much flattened.

Regarding the skull from the under side, we are particularly to note the difference in form of the maxillo palatines, the palatine bodies, and the pterygoids.
'The romer vales lont little among the genera of this ordes. When describing it for Mergus serutor it was sad how its superior border was finished of by a thickened rib. I find in an immature specimen of filuncionetla islandicu that the most of this is contributed by the ascemring proeesses of the palatine on either side, each sending a delicate anterior process over the upper margin of the vomerine plate. In mature skulls of Ducks and Geese the sutural traces of this condition of aftairs are obliterated, and from an examination of a skull of an adult Duck we wonld be very much inclined to think that this thickened npper rim of the romer was a part of its own ossification.

Fig. थs. Skull of Pranta canadensis hutchinsii; rom above. Same specimen as Fig. 27: life size.

Fig. 29. Skull of Branta canadensis hutchinsii; basal riew with maudible remosed: life size. Same specimen as Figs. 27 and 28.

Seen from behind (Fig. 30), we find the plane of the periphery of the foramen magnum nearly at right angles with the basis-cranii, as in Mergus ; but the chief feature that strikes us here is, as already alluded to, the great superiority of the Goose over the Merganser in its more capacious brain-case, which, of course, is indicative of the possession on the part of the former of a comparatively and correspondingly much larger encephalic mass.

In comparing the characters of the skull in Mergus serator with the corresponding ones as we find them in the majority of the Ducks, Swans, dmul Geese, I find them to differ in the following general particulars:

The skull in Mergus servetor: Osseons mandibles long and narrow; lacrymo frontal suture persistent; descending process ot lacryai spinelike; interorbital septum largely deficient at its center; mastoidal head of quadrate single ; trochlere of mandibular foot of quadrate with their loug axes placed nearly parallel with the long axis of the sknll; maxillo-palatiues for their anterior halres meet in the median line, posteriorly they are produced as distinct eylindriform processes with free extremities; pterygoids long, of equal width, and concave outward.

As a rule, in the sknll of Ducks, Swans, and Geese the osseons mandibles vary in lengtl, but are alrays broad and of a lamellar structure; lacrymo-frontal suture obliterated; descending process of lacrymal much expanded, with flat surface directed outward; interorbital septum very rarely shoms a sumall central vacuity (Glaucionctta) ; mastoidal head of quad-

Fig. 30. Posterior view of skul? of Branta canadensis hutchinsii; mandille remored; life size. Same specimen as Fig. 27 et seq. rate usually double; trochlere of mandibular foot of quadrate with their long axes placed nearly at right angles with the long axis of the skull; maxillo-palatines fuse in the median line for their entire lengths, no posterior processes; pterggoids short, straight, aud much larger anteriorly than they are at their proximal extremities.

[^0]: * I am greatly indeloted to the generosity of Mr. (i. Frean Moreom, of Chicage, for this present. The hird was forwamed to me by Mr. Moreom from Chieago to Fort Wingato, N. Mex., by express. It arrived in excelleat condition in the tlesh, amb the fine skeleton it aftorled me has been of the greatest serviee in the present eonnection. When this memoir is published it is my intention to present the specimen to the Sminhonian Institution at Washingen as atyper-R. W. S.

